1. D

 $\log_{2018} \sin x + \log_{2018} \cos x + \log_{2018} \tan x = \log_{2018} (\sin x * \cos x * \tan x)$ Plug in $x = \pi$ and get $log_{2018} (0 * -1 * 0)$ which is undefined. 2. B $((2^3+7^0)^{\frac{3}{2}}+(27^{\frac{1}{3}}-36^{\frac{1}{2}})^2)^{\frac{1}{2}}=((8+1)^{\frac{3}{2}}+(3-6)^2)^{\frac{1}{2}}=(27+9)^{\frac{1}{2}}=6$ 3. A Squaring both sides, we have $(\log_a b)^2 + (\log_b a)^2 + 2 = 16$. So, $(\log_a b)^2 +$ $(\log_b a)^2 = 14$ 4. B 1 $\overline{\log_7 2}$ $\div \log_1$ 3 1 $\frac{1}{9} + \log_8 7 = \log_2 7 \div 2 +$ 1 $\frac{1}{3}$ log₂ 7 = 5 $\frac{5}{6}$ log₂ 7 5. E Take the base x logarithm of both sides of $x^{\log_{16} x} = 8$ to get $\log_{16} x = \log_x 8$. We can further simplify to $\frac{1}{4} \log_2 x = 3\log_x 2 = \frac{3}{\log x}$ $\frac{3}{\log_2 x}$, so $(\log_2 x)^2 = \frac{4}{3}$ $\frac{4}{3}$. $\log_2 x = \frac{2}{\sqrt{3}}$ $rac{2}{\sqrt{3}}$ or $-\frac{2}{\sqrt{3}}$ $rac{2}{\sqrt{3}}$. The product of the solutions would thus be $2^{\frac{2}{\sqrt{3}}}\times 2^{-\frac{2}{\sqrt{3}}} = 1$ 6. C $(\log_x 25)(\log_4 49)(\log_{27} x)(\log_{125} 64)(\log_x 81) = 2$ $(\log_x x)(\log_4 64)(\log_{27} 81)(\log_{125} 25)(\log_x 49) = 1 * 3 *$ 4 3 ∗ 2 $\frac{2}{3} * \log_x 49 = 2$ $\log_x 49 = 2\log_x 7 = \frac{3}{4}$ $\frac{3}{4}$. log_x 7 = $\frac{3}{8}$ $\frac{3}{8}$, so $\log_7 x = \frac{8}{3}$ $\frac{8}{3}$. 7. B $\sqrt{2^2 + \sqrt{2^4 + \sqrt{2^8 + \cdots}}}$ simplifies to $\sqrt{2(1 + \sqrt{1 + \sqrt{1 + \cdots}})}$. Now, solving for the inside part $x = 1 + \sqrt{1 + \sqrt{1 + \sqrt{1 + \cdots}}}$, we get $x - 1 = \sqrt{x}$. The quadratic formula gives $x = \frac{3 \pm \sqrt{5}}{2}$ $\frac{2}{2}$ but the negative sign gives us an x value less than 1 where x is clearly greater than 1 so we have $x = \frac{3+\sqrt{5}}{2}$ $\frac{1}{2} \cdot \sqrt{5}$. Our final answer is $\sqrt{2\left(\frac{3+\sqrt{5}}{2}\right)}$ $\frac{1+\sqrt{5}}{2}$ $=$ $\frac{\sqrt{10}+\sqrt{2}}{2}$ 2 $|10 - 2| = |2 - 10| = 8.$ 8. A $\ln(1 + \log_2(3 + \log_4(5 + x))) = 0$ $1 + \log_2(3 + \log_4(5 + x)) = 1$ $3 + log_4(5 + x) = 1$ $log_4(5 + x) = -2$ $x = 4^{-2} - 5 = -\frac{79}{5}$ 16 9. D $\log_3 r + \log_3 s + \log_3 t = \log_3 rst$. The product of the roots is $-\frac{-3}{5}$ $\frac{-3}{9} = \frac{1}{3}$ $\frac{1}{3}$, so $\log_3 rst =$ $\log_3 \frac{1}{2}$ $\frac{1}{3} = -1.$ 10. B

Note that $-2 = \sqrt[5]{-32}$, so x will be slightly less than -2.

I. False because of the above

II. True because slightly less than -2 cubed less than -2 cubed

III. True because $\sqrt{-(-2)}$ is already greater than 1

- IV. False because slightly less than -2 squared is slightly greater than -2 squared
- V. True because slightly less than -2 to the fourth will be greater than 2 to the fourth

11. A

 $S=\frac{1}{\cdots}$ $\frac{1}{1+r_1^2} + \frac{1}{1+r_2^2}$ $\frac{1}{1+r_2^2} + \frac{1}{1+r_2^2}$ $\frac{1}{1+r_3^2} + \dots + \frac{1}{1+r}$ $\frac{1}{1+r_{20}^2}$. We can use difference of squares to create two more manageable sums:

$$
S = \frac{\left(\frac{1}{r_1 - i} + \frac{1}{r_2 - i} + \frac{1}{r_3 - i} + \dots + \frac{1}{r_{20} - i}\right) - \left(\frac{1}{r_1 + i} + \frac{1}{r_2 + i} + \frac{1}{r_3 + i} + \dots + \frac{1}{r_{20} + i}\right)}{2i}
$$

The first sum can be calculated with a new polynomial $(x + i)^{20} - 7(x + i)^3 + 1$. Now we can use binomial theorem to get $\frac{-21+20i}{2+7i} = \frac{98+187i}{53}$ $\frac{167}{53}$. The second sum can be calculated with a new polynomial $(x - i)^{20} - 7(x - i)^3 + 1$. Now we can use binomial theorem to get $\frac{-21-20i}{2-7i} = \frac{98-187i}{53}$

53

So we have
$$
S = \frac{\frac{98+187i}{53} - \frac{98-187i}{53}}{2i} = \frac{187}{53}
$$
. 187-53=134

12. D

$$
(\log_{2a} 4^x)(1 + \log_2 a) = (\log_{2a} 4^x)(\log_2 2a) = (\log_{2a} 2a)(\log_2 4^x) = 2x
$$

13. C

 $3^{x-4} = 4^{x-3}$ $(x - 4) \ln 3 = (x - 3) \ln 4$ $x \ln 3 - 4 \ln 3 = x \ln 4 - 3 \ln 4$ $x(\ln 3 - \ln 4) = \ln 81 - \ln 64$ $x =$ ln 81 − ln 64 $\ln 3 - \ln 4$ = ln 64 − ln 81 $\ln 4 - \ln 3$

14. D

First, we must multiply $F(x)$ by 8 to get $2^{x+3} + 56$. Then, we add 8 to get $2^{x+3} + 64$. 15. C

 $log n$ $\frac{\log n}{2 \log m} + \frac{\log m}{2 \log n}$ $\frac{\log m}{2 \log n} = 1$. Substituting $x = \log_m n$, we have $x + \frac{1}{x}$ $\frac{1}{x}$ = 2 with the only solution of $x = 1$. Thus, $n = m$.

16. D

$$
a \log_{1440} 5 + b \log_{1440} 2 + c \log_{1440} 3 = d
$$

\n
$$
\log_{1440} 5^a + \log_{1440} 2^b + \log_{1440} 3^c = d
$$

\n
$$
5^a 2^b 3^c = 1440^d = 5^d 2^{5d} 3^{2d}
$$

\nThus, $a = 1, b = 5, c = 2, d = 1, 1 * 5 + 2 * 1 = 7$

17. E

$$
\sqrt{6 + (1 + \sqrt{3 + (1 + \sqrt{3 + \sqrt{8}})^2})^2} = \sqrt{6 + (1 + \sqrt{3 + (1 + (1 + \sqrt{2}))^2})^2}
$$

$$
\sqrt{6 + (1 + \sqrt{3 + (2 + \sqrt{2})^2})^2} = \sqrt{6 + (1 + \sqrt{9 + 4\sqrt{2}})^2} = \sqrt{6 + (2 + 2\sqrt{2})^2} = \sqrt{6 + (2 + 2\sqrt{2})^2}
$$

$4 + \sqrt{2}$, $4 + 2 = 6$. 18. B

 $\log_x y + \frac{1}{\log x}$ $\frac{1}{\log_x y} = \frac{10}{3}$ $\frac{10}{3}$. We can use substitution a quadratic to solve this or recognize that the reciprocals $\frac{1}{3} + 3 = \frac{10}{3}$ $\frac{10}{3}$. So, $\log_x y = \frac{1}{3}$ $\frac{1}{3}$ and $x = y^3$. Now we have, $y^4 = 400$ and $y = 2\sqrt{5}$. Thus, $x = \frac{400}{3\sqrt{5}}$ $\frac{400}{2\sqrt{5}}$ = 40√5. 40√5 – 2√5 = 38√5.

19. D

Simplify $log_4(log_{64} x) = log_{64}(log_4 x)$ to $\frac{1}{2}$ $\frac{1}{2}$ log₂ $(\frac{1}{6})$ $\frac{1}{6}$ log₂ x) = $\frac{1}{6}$ $\frac{1}{6}$ log₂ $(\frac{1}{2})$ $\frac{1}{2}$ log₂ x). Substitute $a = \log_2 x$ and get $\frac{1}{2} \log_2(\frac{1}{6})$ $\frac{1}{6}a) = \frac{1}{6}$ $\frac{1}{6}$ log₂ $(\frac{1}{2})$ $\frac{1}{2}a$) or $log_2((\frac{1}{6}$ $(\frac{1}{6}a)^3) = \log_2(\frac{1}{2})$ $\frac{1}{2}a)$ or $\frac{1}{21}$ $\frac{1}{216}a^3 = \frac{1}{2}$ $\frac{1}{2}a$. Solving, we get $a^2 = 108$.

20. C

Using approximations of $log_{10} 2$ and $log_{10} 3$ where only up to 3 decimal places are needed, take the base 10 logarithm of $18^{50} = 3^{100}2^{50}$ to get $100(0.477) + 50(0.301) =$ 62.75. $12^{50} = 10^{62.75}$, thus the number of digits is 62.75 rounded up or 63.

21. A

 $(3 + \sqrt{7})^6 + (3 - \sqrt{7})^6 = 2(3^6 + 15 * 3^4 * 7 + 15 * 3^2 * 7^2 + 7^3) = 32384.$ We know that $(3 - \sqrt{7})^6 < 1$, so $32384 - 1 < (3 + \sqrt{7})^6 < 32384$. Thus the greatest integer less than $(3 + \sqrt{7})^6$ would be 32384 - 1 = 32383. 3+2+3+8+3=19 22. C

Using basic matrix identities, we have $\left(-\frac{e^5}{2}\right)$ $\left(\frac{e^5}{e^9}\right) + \left(-\frac{e^5}{e^9}\right)$ $\left(\frac{e^3}{e^9}\right) = -2e^{-4}.$

23. B

The units digit of 3^n repeats after every fourth number with 3, 9, 7, 1. In mod4, 5^{7^9} is $1^{7^9} = 1$, so the units digit of will be the first number in the cycle, so 3.

24. B

We can ignore the tens, hundreds, and thousands digits of all number in both summations. We have

 $(1^{2017} + 2^{2017} + 3^{2017} + \cdots + 7^{2017}) + (1^{2018} + 2^{2018} + 3^{2018} + \cdots + 8^{2018})$

2017 is 1mod4 and 2018 is 2mod4. Thus, we can simplify because the units digits repeat every 4th power.

 $(1^1 + 2^1 + 3^1 + \dots + 7^1) + (1^2 + 2^2 + 3^2 + \dots + 8^2).$

The first part can be grouped up by 10 numbers (summing 0 through 9 to get 45 which has a units digit of 5). 2017 divided by 10 is 201 remainder 7 which gives us $201 * 5 +$ $1 + 2 + 3 + 4 + 5 + 6 + 7 = 1033$, so the first sum has a units digit of 3.

The second part can still be grouped up by 10 numbers with some simplification. We have $0 + 1 + 4 + 9 + 16 + 25 + 36 + 49 + 64 + 81 = 285$ which also has a remainder of 5. Thus, $201 * 5 + 0 + 1 + 4 + 9 + 16 + 25 + 36 + 49 + 64 = 1209$, so the second sum has a units digit of 9.

 $3+9=12$, so our answer is 2.

25. A

Take mod 5 of F(n) and get $1 + (-1)^n + 2^n + (-2)^n$ so whenever n is odd, then we get 0. There are 1009 odd integers.

Now, if n is even, we can plug in n=2x to get $1 + 1^x + (-1)^x + (-1)^x$ so only odd values of x work so we have 505 odd values of x from 1 to 1009. $1009+505=1514$.

26. C

After 12 minutes, he's left with $6.4kg * (\frac{1}{2})$ $\frac{1}{2}$ 720 seconds $\frac{144 \text{ seconds}}{144 \text{ seconds}} = 0.2 \text{ kg} = 200 g \text{ of } Zn-7$, which means he has 175g of Zn-71. 2800 $g * (\frac{1}{2})$ $\left(\frac{1}{2}\right)^{x} = 175g$ gives us $x = 4$. $\frac{720 \text{ seconds}}{4}$ $\frac{2\text{cons}}{4}$ = 180 seconds.

27. E

 $cos(\pi\sqrt{x^2+7}) - 1$ is restricted to be greater than or equal to 0 because of the root. $cos(\pi\sqrt{x^2+7}) - 1 \ge 0$, $cos(\pi\sqrt{x^2+7}) \ge 1$. The maximum value of a cosine function is 1 so $cos(\pi\sqrt{x^2+7}) = 1$ with the restriction that $\sqrt{x^2+7}$ is an even integer. Thus, $\log_2(-x^2 + 7x - 10) = 1$, $x^2 - 7x + 12 = 0$ so $x = 3$ or 4. Only $x = 3$ satisfies the $\sqrt{x^2+7}$ restriction.

28. D

The vertical asymptote is where $1 - 4x = 0$ or $x = \frac{1}{4}$ 4 The x-intercept is where $f(x) = 2 - log_3(1 - 4x) = 0$. $x = -2$, so the shortest distance between (-2,0) and the line $x = \frac{1}{1}$ $\frac{1}{4}$ would be along the x axis or simply $|-2| + \left| \frac{1}{4} \right|$ $\frac{1}{4}$ = $\frac{9}{4}$ 4

29. C

We have a telescoping series with
$$
\sqrt[3]{9 \cdot \sqrt[5]{81 \cdot \sqrt[7]{729 \cdot \sqrt[9]{6561 \dots}}} = 9^{\frac{1}{3}} \cdot 9^{\frac{2}{3*5}} \cdot 9^{\frac{3}{3*5*7}} \dots
$$

$$
\frac{9^{\frac{3}{3*5*7}}}{2^{n=1} \frac{n}{(2n+1)!!}}
$$
 which converges to 1/2 so 9¹/2 = 3.

30. A

We essentially such a series:

 $S = 1 * 2 + 2 * 2^2 + 3 * 2^3 + \dots + 100 * 2^{100}$

Now, we can manipulate this series by multiplying by 2 to get

 $2S = 1 * 2^2 + 2 * 2^3 + 3 * 2^4 + \dots + 100 * 2^{101}$

Subtracting, we have

$$
-S = 2 + 2^2 + 2^3 + \dots + 2^{100} - 100 * 2^{101}
$$

Or

 $-S = 2^{101} - 100 * 2^{101}$, so $S = 99 * 2^{101}$

Taking the base 2 log of S, we get $101 + \log_2 99$ while the restriction prevents the expressing from being manipulated. 101+2+99=202.